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Pituitary tumor-transforming gene-1 (PTTG1) is an oncogene highly expressed in a variety of endocrine, as well as
nonendocrine-related cancers. Several tumorigenic mechanisms for PTTG1 have been proposed, one of the best charac-
terized being its capacity to act as a transcriptional activator. To identify novel downstream target genes, we have
established cell lines with inducible expression of PTTG1 and a differential display approach to analyze gene expression
changes after PTTG1 induction. We identified dlk1 (also known as pref-1) as one of the most abundantly expressed PTTG1
targets. DIk1 is known to participate in several differentiation processes, including adipogenesis, adrenal gland devel-
opment, and wound healing. DIk1 is also highly expressed in neuroendocrine tumors. Here, we show that PTTG1
overexpression inhibits adipogenesis in 3T3-L1 cells and that this effect is accomplished by promoting the stability and
accumulation of D1k1 mRNA, supporting a role for PTTG1 in posttranscriptional regulation. Moreover, both pttgl and
dlk1 genes show concomitant expression in fetal liver and placenta, as well as in pituitary adenomas, breast adenocar-
cinomas, and neuroblastomas, suggesting that PTTG1 and DLK1 are involved in cell differentiation and transformation.

INTRODUCTION

Pituitary tumor transforming gene (PTTG1) encodes a mul-
tifunctional protein with roles in the control of mitosis, cell
transformation, DNA repair, and gene regulation (Pei and
Melmed, 1997; Zou et al., 1999; Pei, 2001; Romero et al., 2001;
Kim et al., 2007). The expression of PTTG1 in most normal
tissues is very restricted, with highest levels found in the
testis and thymus (Dominguez et al., 1998). PTTGL1 is
expressed at high levels in multiple tumors including
carcinomas of the lung, breast, thyroid, esophagus, colon,
leukemia, and lymphoma as well as in pituitary adenomas
(Saez et al., 1999; Heaney et al., 2000; Shibata et al., 2002;
Saez et al., 2006). Different nonexcluding mechanisms
might participate in PTTG1 tumorigenic function. PTTG1
inhibits sister-chromatid separation in vertebrates and
may thereby mediate chromosome missegregation (Zou et
al., 1999) leading to an increase in proto-oncogene dose or
to loss of heterozygosity of tumor suppressors (Jallepalli
and Lengauer, 2001; Jallepalli et al., 2001). Also, PTTG1
binds to Ku, the regulatory subunit of the DNA-depen-
dent protein kinase (DNA-PK). This association is dis-
rupted and prevented by double-strand breaks suggesting
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that PTTG1 connects the DNA damage-response pathway
with sister chromatid separation (Romero et al., 2001;
Bernal et al., 2008).

Furthermore, PTTG1 interacts with and inhibits p53’s
transcriptional activity, indicating that the oncogenic effect
of PTTG1 could result from modulation of p53 functions
(Bernal et al., 2002). Finally, it has been proposed that PTTG1
acts as a transcriptional activator. Recently, chromatin im-
munoprecipitation (ChIP)-on-ChIP technology has been
used to survey PTTG1-mediated regulation of 20,000 genes.
These data support a role for PTTG1 in the transcriptional
regulation of genes involved in a variety of cellular pro-
cesses such as cell cycle, metabolic control, and signal trans-
duction (Tong et al., 2007). To examine the effect of PTTG1 on
endogenous target genes, we have developed a cell line
expressing PTTG1 under an inducible promoter. Among the
candidate PTTG1-regulated targets analyzed, the dlk1 gene
showed the most dramatic induction. DLK1, a transmem-
brane protein encoded by the dlk1 gene, belongs to a family
of epidermal growth factor (EGF)-like repeat-containing
proteins that include Notch/Delta/Serrate, which are in-
volved in cell fate determination (Nichols et al., 2007). DLK1
is highly expressed in preadipocytes, but its expression is
abruptly down-regulated during differentiation into adipo-
cytes (Smas and Sul, 1993; Smas et al.,, 1998). Moreover,
constitutive expression of DLK1 in 3T3-L1 cells inhibits adi-
pocyte differentiation, whereas forced down-regulation of
DLKI1 by antisense expression enhances adipogenesis (Smas
and Sul, 1993; Smas et al., 1999). These observations point to
the role of DLK1 as a growth factor, maintaining proliferat-
ing cells in an undifferentiated state. In addition, DLK1 is
highly expressed in adrenal medullary neuroendocrine tu-
mors, in neuroblastomas, small-cell lung carcinomas and
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gliomas (Laborda et al., 1993; van Limpt ef al., 2000; Yin et al.,
2006), indicating that it may play a role in tumorigenesis.

In this study, we find that forced expression of PTTG1
triggers the expression of the dlk1 gene and affects adipocyte
differentiation through the regulation of DLK1 levels. Fur-
thermore, we analyzed the levels of PTTG1 and DLKI1 in
some normal tissues as well as in pituitary adenomas, breast
adenocarcinomas, and neuroblastomas and found a parallel
expression of both proteins in all samples analyzed, indicat-
ing a potential correlation between expression of PTTG1 and
DLK1 and tumor development.

MATERIALS AND METHODS

Generation of Cell Lines with Inducible PTTG1 Expression

Inducible PTTG1 (NIH3T3-PTTG1) or chloramphenicol acetyl transferase
(NIH3T3-CAT) cells were generated using the LacSwitch II-inducible mam-
malian expression system in accordance to manufacturer’s instructions (Strat-
agene, San Diego, CA; Wyborski and Short, 1991). Briefly, founder cell lines
were generated by transfecting NIH3T3 with 10 ug of pCMVLacl, a plasmid
encoding a Lac repressor protein and resistance for hygromycin. Individual
hygromycin-resistant colonies were isolated and characterized by Western
blot. Independent clones with the highest expression of Lac repressor were
used to establish cells with inducible PTTG1 expression. Full-length human
Pttgl cDNA (Dominguez ef al., 1998) was cloned into the vector pOPRSVI/
MCS under the control of a promoter containing both CMV and Lac operator
sequences. Thus, presence of isopropylthiogalactoside (IPTG) in the culture
medium induces PTTG1 expression. Selected founder cells were transfected
with 10 ug of PTTG1 construct. G418-resistant cells were isolated and
screened for PTTG1 expression by immunoblotting upon IPTG treatment.
Three clones demonstrating tightly regulated induction of the transfected
gene were selected for further studies and named NIH3T3-PTTGI. Likewise,
selected founder cells were transfected with the construct pOPI3-CAT, which
contained the CAT gene under CMV and Lac operator promoter sequences;
these clones were named NIH3T3 control.

Differential Display

NIH3T3-PTTG1 and NIH3T3 control cells were collected at 0 and 24 h after
gene induction with 2 mM of IPTG. RNA was extracted with TRIZOL reagent
(Invitrogen, Carlsbad, CA). cDNA was synthesized from 200 ng total RNA,
using MMLYV reverse transcriptase and one of the three anchored primers
(GeneHunter, Brookline, MA). The cDNA generated was used in conjunction
with the three downstream anchored primers and 32 upstream arbitrary
primers (GeneHunter) for PCR display in the presence of a-[**P]dATP (Fi-
scher et al., 1996). The amplified cDNAs were separated on a 6% polyacryl-
amide gel with urea and detected by autoradiography with x-ray film ex-
posed overnight. Specific bands were recovered and reamplified by PCR with
the same primer set and cloned into pGEM-T vector (Promega, Madison, WI).
Recombinant plasmids DNAs were sequenced with Big Dye terminator kits
(Applied Biosystems, Branchburg, NJ).

Northern Blot Analysis

Putative target cDNAs probes were obtained from The Resource Center
German Human Genome Project (RZPD, Berlin, Germany). RNA extraction
from primary tumors and hybridization conditions were described previ-
ously (Saez et al., 1999). Blots were stripped and reused for the different
mRNAs analyzed.

Semiquantitative and Quantitative PCR Analysis

3T3-L1 cells were seeded in six-well plates and transfected with empty vector
or pcDNA3.1-Pttgl or Foxa-2 plasmids using Lipofectamine 2000 (Invitro-
gen). Total RNA was prepared using TRIZOL reagent (Invitrogen). RT-PCR
experiments were carried out using 1 ul of cDNAs generated from 1 ug of
total RNA using Qiagen OneStep RT-PCR kit (Qiagen, Chatsworth, CA). The
RT-PCR exponential phase was determined on 25-35 cycles to allow semi-
quantitative comparisons of cDNAs developed from identical reactions. The
following primers were used: DIk1: forward, 5' GGAATTCTCCTGCGCGTC-
CTCCTGCTC3’, and reverse, 5 CCTCGAGTTACTGTCCCTCGGTGAGG-
AGAG 3’; Foxa-2: forward, 5° GTTAAAGTATGCTGGGAGCCG 3’, and
reverse, 5 CGCCCACATAGGATGACATG 3'; Pttgl: forward, 5" AGGCAC-
CCGTGTGGTTGCT 3’, and reverse, 5 TAAGGCTGGTGGGGCATC 3’, and
actin: forward, 5 TTGCAATGAGCGGTTCCGCT 3’, and reverse 5 TA-
CAGCTGTTTGCGGATGTCC 3'. Expression of mouse and human Pttgl mR-
NAs in NIH3T3 cells was determined using the Applied Biosystems 7500
Real-Time PCR System. The expression levels of the mouse mRNA Pttgl were
measured using the Applied Biosystems TagMan Gene Expression Assays
(MmO00479224_m1) and the ABI PRISM 7500 instrument (Applied Biosys-
tems). To determine human Pttgl mRNA levels we used two Pttgl sequence-
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specific PCR primers (5’ AGGCACCCGTGTGGTTGCT 3’ and 5'TAAGGCT-
GGTGGGGCATC 3') and a TagMan assay-FAM probe (5'AACTTGAG-
ATCTCCCATCTAAGGC 3') obtained from Operon Biotechnologies (Eber-
sberg, Germany). Reactions were 50°C for 2 min, 95°C for 10 min and then
40 cycles of 95°C for 15 s and 60°C for 1 min. An Hprt TagMan Gene
expression assay (Mm 01545399_m1) was used to normalize variations in
cDNA quantities from different samples. Measurements were carried out in
quadruplicate. Absolute quantification of mRNA expression was calculated
after standard curves for both human and mouse PTTG1 plasmids.

In Vitro Stability Assays

Proteins extraction and mRNA degradation assays were performed as de-
scribed elsewhere with some modifications (Chakkalakal ef al., 2008). Briefly,
NIH3T3-PTTG1 and NIH3T3 control cells were induced with 2 mM of IPTG
for 20 h. Proteins extracts were prepared using 500 ul of homogenization
buffer (0.01 M Tris, pH 8, 0.01 M KCl, 0.0015 M MgCl, and 2.5% IGEPAL
CA-630) containing protease inhibitor complete cocktail (Roche Diagnostics,
Mannheim, Germany). After homogenization, protein extracts were centri-
fuged at 3500 X g for 10 min. Then, the pellets were vortexed and incubated
for 20 min on ice in 100 ul extraction buffer (0.02 Tris, pH 8, 0.45 M NaCl, 0.01
EDTA, and protease inhibitor complete cocktail). After incubation, the protein
extracts were centrifuged at 14,000 X ¢ for 10 min, and supernatants (enriched
in nuclear and cytoskeletal fractions) were used for in vitro stability assays.
Protein extracts were depleted from PTTG1 protein by incubation with 2 ug
polyclonal anti-PTTG1 antibody overnight, followed by 2-h incubation with
15 ul protein A-Sepharose beads. Degradation assay were performed using
total RNA (0.2 ug/ul) from NIH3T3 cells, and equal amounts (0.25 ug/ ul) of
NIH3T3-PTTG1 or NIH3T3 protein extracts were incubated together in deg-
radation buffer (10 mM Tris, pH 7.4, 10 mM KOAc, 2 mM MgOAc, 2 mM DTT,
0,1 mM spermine, 1 mM ATP, 0.4 mM GTP, 10 mM phosphocreatine, 1 ug
creatine phosphokinase, 40 U RNasin) for 5 or 20 min at 37°C. The reactions
were stopped by addition of phenol/cloroform, and RNA was precipitated
with isopropanol in the presence of glycogen (Fermentas, Vilnius, Lithuania)
as a carrier. The values of DIk1 and Hprt (as control gene) transcripts remain-
ing at each time point were determined by quantitative real-time-PCR assay.

Lentiviral Production and Infection

The HIV packaging (pCMVDR8.91) and VSV-G (pMDG) plasmids and the
lentiviral vector pHRSIN were kindly provided by Mary K. Collins (Windeyer
Institute, London). The coding sequence of human PTTG1 cDNA was cloned
into the vector SIN-BX-IRE/EMW, and the fragment PTTG1-IRES-enhanced
green fluorescent protein (EGFP) was liberated after digestion with BamHI
and Notl and subcloned into the pHRSIN vector. Insertion and orientation of
the genes were confirmed by restriction enzyme digestion analyses. For
production of lentivirus, 3 X 10° 293T cells were seeded onto a 10-cm Petri
dish and transfected after 24 h with Lipofectamine 2000 (Invitrogen) using
13.5 pg of transfer vector pHRSIN carrying PTTG1 c¢cDNA, 9 ug of pCM-
VDR8.91, and 4.5 pg of pMDG. Lentivirus were harvested 48 h after transfec-
tion, passed through a 0.45-um filter, and concentrated by ultracentrifugation at
100,000 X g for 90 min. Virus particles were resuspended in serum-free DMEM-
F12 (Invitrogen), snap-frozen in liquid nitrogen, and stored at —80°C. For virus
titration 2 X 105 293T cells were infected with virus in complete growth
medium containing 8 ug/ml polybrene for 6 h. Infected cells were detected by
EGFP expression using a FACScan and CellQuest software (BD Biosciences
FACS Systems, San Jose, CA). For infection with the lentiviral stock, 3T3-L1
cells were plated in 60-mm plates, incubated 2 h in complete medium, and
infected with lentiviral particles (MOI = 5) and 8 ug/ul polybrene for 6 h at
37°C. Media were changed to growth media without polybrene for the rest of
the experiment.

Inhibition of DIk1 Expression by siRNA

The DIkl mRNA sequence was analyzed for selecting inhibitory RNA se-
quences using standard design rules. The sequence of the selected short
interfering RNA (siRNA) directed against the mouse DIkl mRNA was as
follows: sense, 5 GAAAGGACUGCCAGCACAAATAT3'; and antisense, 5’
UUGUGCUGGCAGUCCUUUCATAT 3'. An unrelated siRNA sequence was
used as control (sense, 5 UUCUCCGAACGUGUCACGUATAT 3’; antisense,
5" ACGUGACACGUUCGGAGAAJTAT). Both oligos were purchased from
Proligo (Boulder, CO). 3T3-L1 cells were transfected with Oligofectamine
(Invitrogen) according to the manufacturer’s instruction.

Western Blot Analysis

Cell lysates were prepared by lysing cells in NP40 buffer (50 mM Tris-HCI, pH
7.5, 150 mM NaCl, 10% glycerol, and NP40 at 1%, vol/vol) containing a
complete cocktail of protease inhibitors (Roche Diagnostics) and 1 mM PMSF
and resolved on SDS-PAGE. Immunoblotting was performed on nitrocellu-
lose membrane according to the manufacturer’s instructions. PTTG1 was
detected with anti-human PTTG1 antiserum as previously described
(Dominguez et al., 1998). Commercially available antibodies to DLK1 (Santa
Cruz Biotechnology, Santa Cruz, CA) and B-actin (Sigma-Aldrich, St. Louis,
MO) were used as recommended by the manufacturers. Signals were detected
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using Enhanced Chemiluminescence Reagent ECL kit (GE Healthcare, dium was changed to growth medium containing only insulin (GM, 5 ug/ml)
Waukesha, WI). after 48 h (day 2). Staining with Oil Red O was typically performed on day 7.
Cell Culture, Flow Cytometry, and Differentiation Assays Immunohistochemistry

HCT116 cells were maintained in McCoy’s 5A medium (Invitrogen) supple- Tissue samples were collected from this Department of Pathology’s archives
mented with 10% fetal bovine serum, penicillin-streptomycin, glutamine, and and were used following the policies of the local Ethical Committee. Tumors
the appropriate selective agent when needed. NIH3T3 cells were grown consisted of 21 pituitary adenomas, 20 neuroblastomas, and 23 adenocarci-
under identical conditions except that the medium was supplemented with nomas of the breast. Placental and embryonic liver tissues were obtained from
10% newborn calf serum. The results were quantified from three independent spontaneous abortions at 6 and 15 wk of gestation. All tissues were Formalin-
experiments with three PTTG1-overexpressing NIH3T3 clones and three vec- fixed and paraffin-embedded. Five-micrometer paraffin tissue sections were
tor control clones. For flow cytometry analysis, at the indicated times, floating dewaxed, rehydrated, immersed in 3% hydrogen peroxide for 30 min, and
and adherent cells were washed in phosphate-buffered saline (PBS), fixed in covered with 10% normal swine serum for 15 min. Heat-induced antigen
70% ethanol, and stained with propidium iodide (50 ug/ml). Cells were retrieval was performed using a pressure cooker and Tris-EDTA buffer, pH 9.
analyzed by using a FACScalibur (Becton Dickinson Immunocytometry Sys- Incubation with goat polyclonal anti-human DLK1 (1:300 dilution, Santa Cruz
tems, Mountain View, CA). Differentiation of 3T3-L1 cells was induced by Biotechnology) or rabbit polyclonal anti-human PTTG1 (1:500 dilution;
growing cells to confluence (day —2) and then shifting them to differentiation Dominguez et al., 1998) was performed overnight at 4°C. Secondary and
medium (DM) after 48 h (day 0). DM contained 10% FBS, 1 uM dexametha- visualization reagents were applied using LSAB-HRP System and DAB+
sone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), and 5 ug/ml porcine (Dako, Glostrup, Denmark) according to manufacturer’s recommendations.
insulin. DM lacking dexamethasone and IBMX was used as a control. Me- The slides were counterstained with hematoxylin and mounted in DPX (BDH
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Figure 1. Inducible expression of PTTG1 and analysis of candidate target genes. (A) Northern blot analysis of Pttgl induction after exposure
to IPTG. (B) Quantification of murine and human Pttgl mRNA in control NIH3T3 (WT) and PTTG1-overexpressing NIH3T3 cells (PTTG1),
after 24 h of IPTG treatment. (C) Western blot analysis of PTTG1 induction after exposure to IPTG. (D) Proliferation rate of NIH3T3 control
(WT) and PTTG1-overexpressing NIH3T3 cells (PTTG1) at various time points. Values were calculated as the average of three independent
experiments using three clones of each cell line. Error bars, SE. (E) Percentage of NIH3T3 WT and PTTG1 cells in the different cell-cycle phases
and at various time intervals after incubation with IPTG. (F) Representative northern blots of candidate PTTGI targets. Total RNA obtained
from PTTG1-overexpressing NIH3T3 cells grown in the presence or absence of IPTG for 24 h was analyzed using probes corresponding to
some of the candidate PTTG1 targets.
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Table 1. Summary of target genes expressed in PTTG1-overexpressing NIH3T3 cells

Up-regulated genes

Down-regulated genes

NM_010052: Delta-like 1 homolog (DIkI)

NM_178060: Thyroid hormone receptor alphal (Thra)
X03919: N-myc protooncogene

NM_008562: Myeloid cell leukaemia sequence 1 (Mcl1)

NM_009011: RAD23UV excision repair protein homolog B (Rad23B)
NM_009019: Recombination activating protein (Rag1)

NM_011951: Mitogen-activated protein kinase p38

NM_009861: CDC42 GTP-binding protein (Cdc42)

NM_009260: B spectrin (Spnb2)

NM_009254: Serine proteinase inhibitor 3 (Spi3)

NM_009768: Basigin precursor (Bsg)

NM_009127: Stearoyl-coenzyme A desaturase 1 (Scdl)

NM_009128: Stearoyl-coenzyme A desaturase 2 (Scd2)

AK 147326: GAP-associated protein (p190)

NM_008640: Lysosomal-associated protein transmembrane 4A (Laptm4A)

Laboratories, Poole, United Kingdom). Sections where primary antibody was
omitted were used as negative controls. NIH3T3 cells infected with pHRSIN
or pHRSIN-PTTGI lentivirus were grown on coverslips, fixed with 4% para-
formaldehyde in PBS, and permeabilized with 0.1% Triton X-100. Immuno-
staining was carried out according to standard protocols. The goat polyclonal
anti-human DLK1 and rabbit polyclonal anti-human PTTGI1, mentioned above,
were used as primary antibodies. Alexa (blue) 350—-conjugated donkey anti-goat
IgG and Alexa (green) 488-conjugated donkey anti-rabbit IgG (Molecular
Probes, Invitrogen, Eugene, OR) were used as secondary antibodies.

RESULTS

Inducible Expression of Pttgl and Analysis of Candidate
Target Genes

To identify PTTGI target genes, we established NIH3T3 cells
expressing PTTG1 under an IPTG-responsive promoter

A B

Exposure
toIPTG(h) 0 6 12

(Wyborski and Short, 1991). Northern and Western blot
analyses showed tightly regulated induction of Pttgl. Pttgl
mRNA was undetectable in cells growing in the absence of
IPTG, but treatment with 2 mM IPTG led to the induction of
the expected 0.7 kb Pttgl transcript (Figure 1A). Quantita-
tive analysis revealed that total Pttgl transcripts were about
fourfold higher in IPTG-treated cells (PTTG1) than in un-
treated cells (WT; Figure 1B). Analysis of protein expression
using specific anti-PTTG1 antibodies also showed induction
of the expected full-length PTTG1 protein, after treatment
with IPTG (Figure 1C). Protein levels were determined using
specific antibodies and both purified mouse and human
PTTGI1 proteins. Untreated NIH3T3 cells contained 14 pg of
PTTGI1 per ug of total cellular protein and this concentration

PTTG1

DLK1

B-Actin

pHRSIN

pHRSIN-PTTG1

Figure 2. Induction of DIkl by PTTGI. (A) Northern blot analysis of DIkl induction in NIH3T3 cells after IPTG-induced PTTG1 expression.
(B) Western blot analysis of DLK1 expression in both PTTG1- and PTTG1 (DK)-NIH3T3 cells after 24 h of treatment with IPTG. Samples
showed in these panels were resolved on the same gel, and the results obtained were in the same immunoblot. (C) Western blot analysis of
DLK1 levels in HCT116 cells infected with a lentivirus vector expressing PTTG1 ¢cDNA under a constitutive promoter. (D) Immunocyto-
chemical detection of PTTG1 and DLK1 in NIH3T3 cells infected either with lentivirus containing GFP ¢cDNA (pHRSIN) or lentivirus
containing the cassette GFP-IRES-PTTG1 (pHRSIN-PTTG1) under a constitutive promoter. Cells were triple stained for PTTG1 (blue), GFP

(green), and DLK1 (red).
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was 9.5-fold higher after 18 h of treatment with IPTG (data
not shown). To determine the effect of PTTG1 induction in
NIH3TS3 cells, we measured the level of cell proliferation, as
well as the percentage of cells in the different phases of the
cell cycle. We did not observe any significant differences
between induced and noninduced cells (Figure 1, D and E).

The carboxy-terminal domain of PTTGI is able to display a
strong transcriptional activity on transiently transfected re-
porter constructs in yeast and mammalian cells (Dominguez et
al., 1998), suggesting a role in transcriptional regulation. We
used a differential display approach (Liang and Pardee, 1992)
to search for endogenous genes whose expression could be
altered after inducible expression of PTTG1. cDNAs corre-
sponding to 69 different genes were identified. Northern blot
analysis confirmed that 15 of these genes were differentially
expressed, and most of them had not previously been identi-
fied as PTTGI targets (Table 1 and Figure 1F).

Induction of dik1 by PTTG1

Among the differentially expressed genes, we identified dlk1
as the most dramatically induced target after PTTG1 induc-
tion. Time-course expression of DIkl mRNA after PTTG1
induction in NIH3T3 cells was coincident with that of Pttg1,
being detectable 6 h after IPTG treatment (Figure 2A). Fur-
thermore, immunoblotting analysis using cell lysates from
the inducible cell line also showed induction of DLK1 pro-
tein (Figure 2B). An increase in DLK protein levels was also
observed in cells overexpressing a stable form of PTTGI,
PTTG1 (DK), which contains mutated KEN and destruction
boxes (Figure 2B). These domains are necessary for degra-
dation of PTTGI via the proteosome. To exclude cell type-
specific effects of PTTG1 on DIkl expression, we used the
HCT116 human cell line of epithelial origin and lentiviral-
based delivery of Pttgl. In these cells, induction of DLK1 by
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PTTG1 was also observed (Figure 2C), indicating that the
signaling pathways leading to DLK1 up-regulation are func-
tional in both cell lines analyzed. Increased levels of DLK1
after overexpression of PTTG1 protein were also detected by
immunofluorescence. Figure 2D shows accumulation of
DLK1 in NIH3T3 cells infected with pHRSIN-PTTG1 lenti-
virus, which contain the cassette PTTGI1-IRES-GFP under a
constitutive promoter in comparison to cells infected with
pHRSIN expressing the GFP gene. We next analyzed
whether PTTG1 acts as a transcriptional regulator of the dlk1
gene using reporter plasmids containing the dlk1 promoter.
Control and PTTG1-overexpressing NIH3T3 cells were tran-
siently transfected with the luciferase reporter plasmids
DLK-191, DLK-1400, and also DLK-4200, which contain the
dlk1 promoter extending 191, 1400, and 4062 base pairs
upstream of the transcriptional start site, respectively. These
dlk1 promoter regions showed no significant changes in the
promoter activity between PTTG1-overexpressing NIH3T3
and mock-transfected NIH3T3 (Supplemental Figure S1).
We conclude that the promoter fragments used in these
experiments do not contain PTTGI response elements.

To determine whether the higher level of DIkl mRNA in
PTTG1-overexpressing cells was due to increased DIkl
mRNA stability, we chose to employ a previously described
in vitro stability assay (Chakkalakal et al., 2008). With the use
of this assay, we examined the degradation of DIkl mRNA
in the presence of protein extracts obtained from PTTGI1-
overexpressing cells or control cells. As shown in Figure 3A,
DIkl mRNA degrades at a slower rate in the presence of
protein extracts from PTTG1l-overexpressing cells, in com-
parison to mRNA incubated with control cell extracts. We
observed no difference in the rate of degradation of the
housekeeping gene Hprt transcripts upon incubation with
either control or PTTG1-overexpressing cells extracts. In
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an attempt to demonstrate that PTTG1 was directly in-
volved in the DIkl mRNA stabilization, we immunode-
pleted PTTG1 from PTTGIl-overexpressing cells extracts.
We used a double incubation with anti-PTTG1 antibody
for the depletion. The efficiency of immunodepletion was
estimated to be >95% by immunoblotting (Figure 3B).
PTTG1-depleted extracts kept the capacity to stabilize the
Dlk1 mRNA (Figure 3C). This result suggests that PTTG1
does not interact with mRNA DIkl and that one or more
proteins induced by PTTGI contribute to the differential
abundance of DLK1 transcripts in PTTG1-overexpressing
cells.

PTTG1 Signaling Inhibits Differentiation of 3T3-L1 Cells

DLK1 is a critical regulator of adipogenesis. To investigate
the effect of PTTG1 signaling on adipocyte differentiation,
we used a lentivirus expressing Pttgl cDNA in 3T3-L1 cells.
These cells, when grown to confluence and exposed to a
differentiation-promoting medium (containing IBMX, insu-
lin, and dexamethasone), undergo adipogenesis and accu-
mulate lipids, which can be visualized after Oil Red O
staining. 3T3-L1 cells infected with a control lentivirus
(pHRSIN) normally followed this process (Figure 4A, panels
2 and 4), and showed down-regulation of DLK1 (Figure 4B,
lanes 3 and 5). Remarkably, PTTG1 expression was concur-
rently abolished during differentiation of 3T3-L1 cells (Fig-
ure 4B, lanes 3 and 5). However, when 3T3-L1 cells were
infected with pHRSIN-PTTG1 lentivirus, they accumulated
both PTTG1 and DLK1 proteins (Figure 4B, lanes 2, 4, and 6)
and significantly accumulated lower amounts of lipids (Fig-
ure 4A, panels 3 and 5). Importantly, this effect was over-
come in cells transfected with a specific siRNA directed
against DIk1 (Figure 4A, panel 6, and B, lane 7) suggesting
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Figure 4. High PTTGI levels inhibit adipo-
cyte differentiation. (A) Oil Red O staining of
fat droplets on day 7 (panels 2 and 3) and 10
(panels 4-6) of differentiating cells. Cells
shown in panels 2 and 4 were transferred to the
differentiation medium after infection with
PHRSIN control lentivirus, whereas cells in
panels 3, 5, and 6 were transferred to the dif-
ferentiation medium after infection with pHR-
SIN-PTTGI lentivirus. Cells in panel 6 were
transfected with DIkl siRNA on day 7 and Oil
Red O stained on day 10. Panel 1 corresponds
to Oil Red O staining of undifferentiated cells.
(B) Analysis of DLK1, PTTG1, and pB-actin
(loading control) levels by Western immuno-
blotting in mouse preadipocytes 3T3-L1 cul-
tured under selective conditions to induce cell
differentiation. Lane 1, cells on day 0; lanes 3
and 5, cells on days 7 and 10 following differ-
entiation induction after infection with pHR-
SIN lentivirus; lanes 2, 4, and 6, cells on days 0,
7, and 10 after the induction of differentiation
after infection with pHRSIN-PTTGI lentivirus;
lane 7, corresponds to cells on day 10 after dif-
ferentiation induction infected with pHRSIN-
PTTGL lentivirus and transfected on day 7 with a
specific siRNA directed against DIkl mRNA.

Day 10

that PTTGI blocks 3T3-L1 differentiation via DLK1 accumu-
lation. Likewise, the expression level of the adipocyte
markers scdl and scd2 (stearoyl-CoA desaturase 1 and 2)
decreases notably after PTTG1 overexpression (Figure 1B
and Table 1). However, infection of 3T3-L1 cells with a
lentivirus containing a specific siRNA against PTTG1 did
not show a significant decrease of DIk1 levels and exhib-
ited a similar differentiation capacity compared with con-
trol GFP-expressing cells (Supplemental Figure S2). These
data suggest the involvement of additional signaling
pathways involved in the stabilization of DLK1 levels in
these cells.

PTTG1 and FOXA-2 Regulate DIk1 Levels through
Independent Pathways

Previous studies have demonstrated that in preadipocytes,
the transcription factor FOXA-2 inhibits adipocyte differen-
tiation by activating the transcription of the dlk1 gene (Wol-
frum et al., 2003). To determine the possibility that DLK1,
PTTG1, and FOXA-2 take part in the same regulatory path-
way, 3T3-L1 cells were transfected with plasmids expressing
either Pttgl or Foxa-2 cDNAs under the control of a consti-
tutive promoter. Expression levels of Pttg1, Foxa-2, and DIk1
were measured by semiquantitative RT-PCR. In agreement
with our and previous results, DIkl expression was in-
creased in both Pttgl- and Foxa-2-transfected cells (Figure
5). However, no differences in Pttgl mRNA expression were
found in 3T3-L1 cells overexpressing FOXA-2. Similarly, the
expression levels of Foxa-2 were not affected by PTTG1
overexpression, suggesting that PTTG1 and FOXA-2 regu-
late DIk1 levels through independent pathways.
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Concurrent Expression of PTTG1 and DLK1 in Normal
and Tumor Tissues

DIkl mRNA expression was tested by Northern blot in a
series of normal human tissues among which placenta ex-
hibited maximal levels (Figure 6A). Immunohistochemical
studies showed that 6-wk placental trophoblasts and embry-
onic liver present similar levels of PTTG1 and DLK1 proteins
(Figure 6, D-G). Concordantly, expression of both proteins
was reduced at 15 wk of gestation (Figure 6, H and I), with
DLK1 expression retained in hematopoietic cells. As it was
shown in Figure 4B, DLK1 and PTTG1 proteins were unde-
tectable by Western blot in adipocytes differentiated in vitro;
likewise, these proteins were also absent in perithymic dif-
ferentiated adipocytes (Figure 6, B and C). In addition, ex-
pression of Pttgl and DIkl mRNAs was studied by Northern
blot in a set of pituitary adenomas and breast adenocarcino-
mas. We analyzed nine surgically removed adenomas of
pituitary and three normal pituitary postmortem specimens.
We detected high levels of Pttgl mRNA in all adenomas
(Figure 6], lanes 1-9), whereas a very weak or undetectable
signal was observed in normal pituitary specimens (Figure
6], lanes 10-12). Strikingly, DIkl mRNA showed concomi-
tant expression to Pttgl mRNA in these samples (Figure 6]).
In breast tissue, Pttgl mRNA was abundantly expressed in
all adenocarcinomas tested compared with normal breast
tissue (Figure 6K, lanes 1-12). Similarly to the situation
found in the pituitary adenomas, we also observed a corre-
lation between the expression of Pttgl and Dlkl mRNA in
breast adenocarcinomas. However, despite the high Pttgl
levels found in all the tumor samples, we found intermedi-
ate DIkl expression in two adenocarcinomas (Figure 6K,
lanes 5 and 6) and a weaker signal in four samples (Figure
6K, lanes 1 and 10-12). To confirm these results, we per-
formed immunohistochemical studies in 21 pituitary adeno-
mas and 23 breast adenocarcinomas. In pituitary adenomas,
parallel expression of PTTG1 and DLK1 was detected in
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80.9% of cases (Figure 6, L and M) and 73.9% of breast
adenocarcinomas (Figure 6, N and O). In neuroblastomas,
immunohistochemical experiments (n = 20) also demon-
strated concordant expression of PTTG1 and DLK1 in 80%
cases (Figure 6, P and Q).

DISCUSSION

Different mechanisms have been proposed to explain PTTG1
tumorigenic capabilities, including its role as a transcrip-
tional activator. To address the functional properties of
PTTG1 and to examine its effects on endogenous target
genes, we analyzed a set of genes whose expression is af-
fected by high levels of PTTG1, focusing our attention on the
dlk1 gene, which showed the highest levels of induction.
Numerous studies have shown that forced expression of dlk1
inhibits adipogenesis, whereas its suppression promotes this
process, pointing to an important role for dlk1 in the main-
tenance of the undifferentiated state of preadipocytes. The
high levels of DIk1 found after overexpression of PTTG1 in
NIH3TS3 cells, prompted us to analyze the effect of PTTG1 on
adipocyte differentiation. Here we show that constitutive
lentiviral-mediated expression of PTTG1 maintains the ex-
pression levels of DLK1 and suppress adipocyte differenti-
ation, suggesting a role for PTTGI in this process. Although
overexpression of PTTGI1 affects the expression levels of
numerous genes, we observed that ectopic expression of
PTTGI, followed by a decrease of Dkl expression using a
specific siRNA, leads to progression of differentiation, indi-
cating that the effect of PTTG1 on adipocyte differentiation is
specifically mediated through the regulation of dlk1.

Using an in vitro stability assay, we have determined that
DIkl mRNA degrades at a slower rate in the presence of
protein extracts enriched in PTTG1 protein. We believe that
this effect is not achieved through direct binding of PTTG1
to DIkl mRNA because PTTG1 amino acid sequence lacks
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Figure 6. PTTGI1 and DLK1 expression in normal and tumor tissues. (A) Northern blot analysis of Poly (A)+ mRNA derived from various
adult human tissues (Clontech) hybridized with DIk1- and B-actin-specific probes. (B and C) Immunohistochemical expression of PTTG1 (B)
and DLK1 (C) in perithymic differentiated adipocytes (200X). (D-I) Immunohistochemical expression of PTTG1 (D, F, and H) and DLK1 (E,
G, and I) in human placenta (200X; D and E); human liver at 6 wk (F and G) and 15 wk (H and I) of gestation (200X). (] and K) Northern
blot analysis of Pttgl and DIkl mRNA expression in pituitary adenomas (J) and breast adenocarcinomas (K). (L-Q) Immunohistochemical
demonstration of PTTG1 (L, N, and P) and DLK1 (M, O, and Q) in pituitary adenoma (L and M; 400X), breast adenocarcinoma (N and O;
200X), and neuroblastoma (P and Q; 400X).

putative RNA-binding domains. Furthermore, the stability =~ tracts is not affected by depletion of PTTG1 from these
of DIkl mRNA in PTTG1-overexpressing NIH3T3 cells ex- extracts. This suggests that DIk1 mRNA stability is indirectly
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modulated by PTTGL. In fact, expression of genes coding
for RNA-binding proteins, like rbms3, which stabilizes
specific mRNAs (Fritz and Stefanovic, 2007), is notably
increased in PTTG1-overexpressing NIH3T3 cells. To test
whether PTTG1 was able to transactivate the dlk1 gene, we
performed luciferase reporter assays using DIkl promoter
fragments of 191, 1400, or 4200 base pairs. Under these
experimental conditions PTTG1 does not seem to act as a
transcriptional activator of dlk1, although we cannot rule out
the presence of PTTG1 response elements in other regions of
the dlk1 gene and that both a transcriptional and posttran-
scriptional mechanisms could act in concert to promote in-
creased expression of DIkI.

A cascade of transcription factors involved in adipocyte
differentiation has been identified, among them, the hepato-
cyte nuclear factor FOXA-2. This transcription factor is ex-
pressed in preadipocytes and inhibits the differentiation of
this type of cells by activating the transcription of the dlk1
gene (Wolfrum et al., 2003). As in the case of PTTG1 over-
expression, DLK1 is required for the inhibitory action of
FOXA2 on adipocyte differentiation. In fact, antibodies
against the bioactive soluble form of DLK1 block the differ-
entiation of 3T3-L1 cells constitutively expressing the foxa-2
gene (Smas et al., 1997). To study the role of FOXA-2 in
PTTG1-mediated DLK1 induction, we performed quantita-
tive and semiquantitative RT-PCR analysis of Pttgl, DIk1,
and Foxa-2 mRNAs in 3T3-L1 cells. Under this experimental
setting, we found that FOXA-2 does not affect the expression
level of Pttgl and vice versa suggesting that PTTG1 and
FOXA-2 participate in the induction of DIk1 through differ-
ent pathways. However, both FOXA-2 and DLK1 expression
can be enhanced in primary preadipocytes by the growth
hormone (GH), suggesting a FOXA-2-dependent antiadipo-
genic activity of GH. Likewise, a positive correlation be-
tween PTTG1 expression and both in vitro and in vivo GH
secretion has been demonstrated (Hunter et al., 2003). There-
fore, we cannot exclude the possibility that PTTG1 and
FOXA-2-dependent mechanisms leading to DLK1 induction
are connected via the GH.

A parallel expression of PTTG1 and DLK1 was observed
at early stages of human fetal liver development and in
placenta. These expression data support a role for dlkl and
pttgl in maintaining proliferating cells in the undifferenti-
ated state and indicate that these genes may also play a role
in the regulation of the physiological exchange that occurs
within the placenta. Most strikingly, we show that DLK1
and PTTG1 are also closely expressed in tumors. Expression
of DIkl in human tumors has been previously reported in
neuroblastoma and small cell lung carcinoma cell lines
(Laborda ef al., 1993) and, more recently, in pituitary adeno-
mas and pheochromocytomas (Altenberger et al., 2006).
DLK1 may have oncogenic properties as increased expres-
sion of DLK1 in glioblastoma multiforme cell lines enhances
their transformed phenotype (Yin ef al., 2006). High PTTG1
levels have been also reported in a variety of endocrine- and
nonendocrine-related cancers (Saez et al., 1999; Heaney et al.,
2000; Kakar and Malik, 2006; Saez et al., 2006). Furthermore,
PTTGI1 levels correlate with tumor invasiveness (Heaney et
al., 2000; Saez et al., 2006), and it has been identified as a key
signature gene associated with tumor metastasis (Ra-
maswamy et al., 2003). Interestingly, we found that PTTG1
and DLK1 proteins, whose expression is limited to a small
number of specific tissues in the adult, were concurrently
expressed in ~80% of pituitary adenomas and neuroblasto-
mas and 74% of breast adenocarcinomas. This indicates that,
similarly to PTTG1, DLK1 gene expression could be of prog-
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nostic interest in future clinical studies involving these tu-
mor types.

Gene expression studies evidence that embryonic pro-
grams reemerge during the development of some tumors
and that aggressive tumor cells are phenotypically plastic,
sharing many properties with embryonic cells (Gupta ef al.,
2005; Topczewska et al., 2006). We propose that in malignant
tumors, coexpression of PTTG1 and DLK1, physiologically
expressed during fetal growth and development, is associ-
ated with the regression to a more primitive, fetal-like phe-
notype.

To our knowledge, this is the first demonstration that
overexpression of PTTG1 may affect the differentiation pro-
cess of adipocytes. Importantly, we also provide evidence
supporting a role for PTTGI in post-transcriptional regula-
tion. Furthermore, our findings highlight the convergence of
tumorigenic and embryonic signaling pathways. The re-
gained ability of PTTG1 to promote the accumulation of
DIk1, a developmentally regulated protein, strongly sup-
ports the idea that PTTG1 may increase the level of undif-
ferentiation and, therefore, the aggressiveness of the some
tumors.
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